ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.02126
  4. Cited By
CRADL: Contrastive Representations for Unsupervised Anomaly Detection
  and Localization

CRADL: Contrastive Representations for Unsupervised Anomaly Detection and Localization

5 January 2023
Carsten T. Lüth
David Zimmerer
Gregor Koehler
Paul F. Jaeger
Fabian Isensee
Jens Petersen
Klaus H. Maier-Hein
    UQCV
    MedIm
ArXivPDFHTML

Papers citing "CRADL: Contrastive Representations for Unsupervised Anomaly Detection and Localization"

3 / 3 papers shown
Title
cOOpD: Reformulating COPD classification on chest CT scans as anomaly
  detection using contrastive representations
cOOpD: Reformulating COPD classification on chest CT scans as anomaly detection using contrastive representations
S. D. Almeida
Carsten T. Lüth
T. Norajitra
Tassilo Wald
Marco Nolden
Paul F. Jaeger
C. Heussel
J. Biederer
O. Weinheimer
Klaus Maier-Hein
13
7
0
14 Jul 2023
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
302
7,434
0
11 Nov 2021
Anomaly detection through latent space restoration using
  vector-quantized variational autoencoders
Anomaly detection through latent space restoration using vector-quantized variational autoencoders
Sergio Naval Marimont
G. Tarroni
DRL
120
57
0
12 Dec 2020
1