ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.03178
12
0

Deep Planar Parallax for Monocular Depth Estimation

9 January 2023
H. Liang
Zhichao Li
Y. Yang
Naiyan Wang
    MDE
ArXivPDFHTML
Abstract

Recent research has highlighted the utility of Planar Parallax Geometry in monocular depth estimation. However, its potential has yet to be fully realized because networks rely heavily on appearance for depth prediction. Our in-depth analysis reveals that utilizing flow-pretrain can optimize the network's usage of consecutive frame modeling, leading to substantial performance enhancement. Additionally, we propose Planar Position Embedding (PPE) to handle dynamic objects that defy static scene assumptions and to tackle slope variations that are challenging to differentiate. Comprehensive experiments on autonomous driving datasets, namely KITTI and the Waymo Open Dataset (WOD), prove that our Planar Parallax Network (PPNet) significantly surpasses existing learning-based methods in performance.

View on arXiv
Comments on this paper