ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.04605
  4. Cited By
Exploring the Approximation Capabilities of Multiplicative Neural
  Networks for Smooth Functions

Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions

11 January 2023
Ido Ben-Shaul
Tomer Galanti
S. Dekel
ArXivPDFHTML

Papers citing "Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions"

3 / 3 papers shown
Title
A New Perspective To Understanding Multi-resolution Hash Encoding For Neural Fields
A New Perspective To Understanding Multi-resolution Hash Encoding For Neural Fields
Steven Tin Sui Luo
24
0
0
05 May 2025
Meta Internal Learning
Meta Internal Learning
Raphael Bensadoun
Shir Gur
Tomer Galanti
Lior Wolf
GAN
23
8
0
06 Oct 2021
A Decomposable Attention Model for Natural Language Inference
A Decomposable Attention Model for Natural Language Inference
Ankur P. Parikh
Oscar Täckström
Dipanjan Das
Jakob Uszkoreit
201
1,367
0
06 Jun 2016
1