ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07894
13
0

Subject-Independent Brain-Computer Interfaces with Open-Set Subject Recognition

19 January 2023
Dong-Kyun Han
Dong-Young Kim
Geun-Deok Jang
    BDL
ArXivPDFHTML
Abstract

A brain-computer interface (BCI) can't be effectively used since electroencephalography (EEG) varies between and within subjects. BCI systems require calibration steps to adjust the model to subject-specific data. It is widely acknowledged that this is a major obstacle to the development of BCIs. To address this issue, previous studies have trained a generalized model by removing the subjects' information. In contrast, in this work, we introduce a style information encoder as an auxiliary task that classifies various source domains and recognizes open-set domains. Open-set recognition method was used as an auxiliary task to learn subject-related style information from the source subjects, while at the same time helping the shared feature extractor map features in an unseen target. This paper compares various OSR methods within an open-set subject recognition (OSSR) framework. As a result of our experiments, we found that the OSSR auxiliary network that encodes domain information improves generalization performance.

View on arXiv
Comments on this paper