ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.08297
28
7

Parametrization Cookbook: A set of Bijective Parametrizations for using Machine Learning methods in Statistical Inference

19 January 2023
Jean-Benoist Léger
ArXiv (abs)PDFHTML
Abstract

We present in this paper a way to transform a constrained statistical inference problem into an unconstrained one in order to be able to use modern computational methods, such as those based on automatic differentiation, GPU computing, stochastic gradients with mini-batch. Unlike the parametrizations classically used in Machine Learning, the parametrizations introduced here are all bijective and are even diffeomorphisms, thus allowing to keep the important properties from a statistical inference point of view, first of all identifiability. This cookbook presents a set of recipes to use to transform a constrained problem into a unconstrained one. For an easy use of parametrizations, this paper is at the same time a cookbook, and a Python package allowing the use of parametrizations with numpy, but also JAX and PyTorch, as well as a high level and expressive interface allowing to easily describe a parametrization to transform a difficult problem of statistical inference into an easier problem addressable with modern optimization tools.

View on arXiv
Comments on this paper