ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.08297
  4. Cited By
Parametrization Cookbook: A set of Bijective Parametrizations for using
  Machine Learning methods in Statistical Inference

Parametrization Cookbook: A set of Bijective Parametrizations for using Machine Learning methods in Statistical Inference

19 January 2023
Jean-Benoist Léger
ArXiv (abs)PDFHTML

Papers citing "Parametrization Cookbook: A set of Bijective Parametrizations for using Machine Learning methods in Statistical Inference"

3 / 3 papers shown
Title
Efficient preconditioned stochastic gradient descent for estimation in
  latent variable models
Efficient preconditioned stochastic gradient descent for estimation in latent variable models
C. Baey
Maud Delattre
E. Kuhn
Jean-Benoist Léger
Sarah Lemler
40
4
0
22 Jun 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
Practical and Matching Gradient Variance Bounds for Black-Box
  Variational Bayesian Inference
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
109
8
0
18 Mar 2023
1