Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.09308
Cited By
On the Expressive Power of Geometric Graph Neural Networks
23 January 2023
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Expressive Power of Geometric Graph Neural Networks"
19 / 19 papers shown
Title
The impact of allocation strategies in subset learning on the expressive power of neural networks
Ofir Schlisselberg
Ran Darshan
91
0
0
10 Feb 2025
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
70
3
0
28 Jan 2025
Enhancing Graph Representation Learning with Localized Topological Features
Zuoyu Yan
Qi Zhao
Ze Ye
Tengfei Ma
Liangcai Gao
Zhi Tang
Yusu Wang
Chao Chen
47
0
0
17 Jan 2025
FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Alex Morehead
Jianlin Cheng
OOD
112
1
0
14 Dec 2024
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
26
1
0
15 Oct 2024
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
40
1
0
02 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
36
5
0
24 Jun 2024
Evaluating representation learning on the protein structure universe
Arian R. Jamasb
Alex Morehead
Chaitanya K. Joshi
Zuobai Zhang
Kieran Didi
...
Charles Harris
Jian Tang
Jianlin Cheng
Pietro Lio
Tom L. Blundell
SSL
36
12
0
19 Jun 2024
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
47
4
0
24 May 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
19
4
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
31
2
0
07 Feb 2024
Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure
Ian Dunn
D. Koes
DiffM
GNN
19
3
0
22 Nov 2023
Mixture of Weak & Strong Experts on Graphs
Hanqing Zeng
Hanjia Lyu
Diyi Hu
Yinglong Xia
Jiebo Luo
23
3
0
09 Nov 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
13
13
0
02 Jun 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
52
0
28 Apr 2023
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
221
498
0
20 Oct 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
186
913
0
02 Mar 2020
1