Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.10048
Cited By
Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting
24 January 2023
Kaiwen Zhang
Jialun Peng
Jingjing Fu
Dong Liu
ViT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting"
8 / 8 papers shown
Title
VipDiff: Towards Coherent and Diverse Video Inpainting via Training-free Denoising Diffusion Models
Chaohao Xie
Kai Han
Kwan-Yee K. Wong
VGen
DiffM
114
0
0
21 Jan 2025
Transformer-based Image and Video Inpainting: Current Challenges and Future Directions
Omar Elharrouss
Rafat Damseh
Abdelkader Nasreddine Belkacem
E. Badidi
Abderrahmane Lakas
ViT
30
2
0
28 Jun 2024
Reimagining Reality: A Comprehensive Survey of Video Inpainting Techniques
Shreyank N. Gowda
Yash Thakre
Shashank Narayana Gowda
Xiaobo Jin
24
0
0
31 Jan 2024
Transformer-based Generative Adversarial Networks in Computer Vision: A Comprehensive Survey
S. Dubey
Satish Kumar Singh
ViT
18
32
0
17 Feb 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
Kelvin C. K. Chan
Shangchen Zhou
Xiangyu Xu
Chen Change Loy
149
388
0
27 Apr 2021
An Internal Learning Approach to Video Inpainting
Haotian Zhang
Long Mai
N. Xu
Zhaowen Wang
John Collomosse
Hailin Jin
48
70
0
17 Sep 2019
Image Inpainting for Irregular Holes Using Partial Convolutions
Guilin Liu
F. Reda
Kevin J. Shih
Ting-Chun Wang
Andrew Tao
Bryan Catanzaro
142
1,912
0
20 Apr 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,471
0
17 Apr 2017
1