ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10388
  4. Cited By
SGCN: Exploiting Compressed-Sparse Features in Deep Graph Convolutional
  Network Accelerators

SGCN: Exploiting Compressed-Sparse Features in Deep Graph Convolutional Network Accelerators

25 January 2023
Mingi Yoo
Jaeyong Song
Jounghoo Lee
Namhyung Kim
Youngsok Kim
Jinho Lee
    GNN
ArXivPDFHTML

Papers citing "SGCN: Exploiting Compressed-Sparse Features in Deep Graph Convolutional Network Accelerators"

3 / 3 papers shown
Title
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design
Sung Une Lee
Boming Xia
Yongan Zhang
Ang Li
Yingyan Lin
GNN
42
45
0
22 Dec 2021
RingCNN: Exploiting Algebraically-Sparse Ring Tensors for
  Energy-Efficient CNN-Based Computational Imaging
RingCNN: Exploiting Algebraically-Sparse Ring Tensors for Energy-Efficient CNN-Based Computational Imaging
Chao-Tsung Huang
19
9
0
19 Apr 2021
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
139
828
0
28 Sep 2019
1