39
3

Compatibility of convergence algorithms for autonomous mobile robots

Abstract

We investigate autonomous mobile robots in the Euclidean plane. A robot has a function called target function to decide the destination from the robots' positions, and operates in Look-Compute-Move cycles, i.e., identifies the robots' positions, computes the destination by the target function, and then moves there. Robots may have different target functions. Let Φ\Phi and Π\Pi be a set of target functions and a problem, respectively. If the robots whose target functions are chosen from Φ\Phi always solve Π\Pi, we say that Φ\Phi is compatible with respect to Π\Pi. If Φ\Phi is compatible with respect to Π\Pi, every target function ϕΦ\phi \in \Phi is an algorithm for Π\Pi (in the conventional sense). Note that even if both ϕ\phi and ϕ\phi' are algorithms for Π\Pi, {ϕ,ϕ}\{ \phi, \phi' \} may not be compatible with respect to Π\Pi. From the view point of compatibility, we investigate the convergence, the fault tolerant (n,fn,f)-convergence (FC(ff)), the fault tolerant (n,fn,f)-convergence to ff points (FC(ff)-PO), the fault tolerant (n,fn,f)-convergence to a convex ff-gon (FC(ff)-CP), and the gathering problems, assuming crash failures. As a result, we see that these problems are classified into three groups: The convergence, the FC(1), the FC(1)-PO, and the FC(ff)-CP compose the first group: Every set of target functions which always shrink the convex hull of a configuration is compatible. The second group is composed of the gathering and the FC(ff)-PO for f2f \geq 2: No set of target functions which always shrink the convex hull of a configuration is compatible. The third group, the FC(ff) for f2f \geq 2, is placed in between. Thus, the FC(1) and the FC(2), the FC(1)-PO and the FC(2)-PO, and the FC(2) and the FC(2)-PO are respectively in different groups, despite that the FC(1) and the FC(1)-PO are in the first group.

View on arXiv
Comments on this paper