ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11351
  4. Cited By
Estimating Causal Effects using a Multi-task Deep Ensemble
v1v2v3 (latest)

Estimating Causal Effects using a Multi-task Deep Ensemble

International Conference on Machine Learning (ICML), 2023
26 January 2023
Ziyang Jiang
Zhuoran Hou
Yi-Ling Liu
Yiman Ren
Keyu Li
David Carlson
    CML
ArXiv (abs)PDFHTML

Papers citing "Estimating Causal Effects using a Multi-task Deep Ensemble"

6 / 6 papers shown
Title
Enhancing predictive imaging biomarker discovery through treatment
  effect analysis
Enhancing predictive imaging biomarker discovery through treatment effect analysis
Shuhan Xiao
Lukas Klein
Jens Petersen
Philipp Vollmuth
Paul F. Jaeger
Klaus H. Maier-Hein
166
1
0
04 Jun 2024
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Yaxin Fang
Faming Liang
CML
205
3
0
27 Mar 2024
CATE Estimation With Potential Outcome Imputation From Local Regression
CATE Estimation With Potential Outcome Imputation From Local RegressionConference on Uncertainty in Artificial Intelligence (UAI), 2023
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
CML
164
2
0
07 Nov 2023
Estimating treatment effects from single-arm trials via latent-variable
  modeling
Estimating treatment effects from single-arm trials via latent-variable modelingInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Manuel Haussmann
Tran Minh Son Le
Viivi Halla-aho
Samu Kurki
Jussi Leinonen
Miika Koskinen
Samuel Kaski
Harri Lähdesmäki
CML
239
0
0
06 Nov 2023
Causal Mediation Analysis with Multi-dimensional and Indirectly Observed
  Mediators
Causal Mediation Analysis with Multi-dimensional and Indirectly Observed Mediators
Ziyang Jiang
Yi-Ling Liu
M. H. Klein
Ahmed Aloui
Yiman Ren
Keyu Li
Vahid Tarokh
David Carlson
CML
95
2
0
13 Jun 2023
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
742
316
0
09 Jul 2017
1