ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11497
17
26

D2^22CSG: Unsupervised Learning of Compact CSG Trees with Dual Complements and Dropouts

27 January 2023
Fenggen Yu
Qimin Chen
Maham Tanveer
Ali Mahdavi Amiri
Hao Zhang
    3DPC
ArXivPDFHTML
Abstract

We present D2^22CSG, a neural model composed of two dual and complementary network branches, with dropouts, for unsupervised learning of compact constructive solid geometry (CSG) representations of 3D CAD shapes. Our network is trained to reconstruct a 3D shape by a fixed-order assembly of quadric primitives, with both branches producing a union of primitive intersections or inverses. A key difference between D2^22CSG and all prior neural CSG models is its dedicated residual branch to assemble the potentially complex shape complement, which is subtracted from an overall shape modeled by the cover branch. With the shape complements, our network is provably general, while the weight dropout further improves compactness of the CSG tree by removing redundant primitives. We demonstrate both quantitatively and qualitatively that D2^22CSG produces compact CSG reconstructions with superior quality and more natural primitives than all existing alternatives, especially over complex and high-genus CAD shapes.

View on arXiv
Comments on this paper