ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12307
11
35

MQAG: Multiple-choice Question Answering and Generation for Assessing Information Consistency in Summarization

28 January 2023
Potsawee Manakul
Adian Liusie
Mark J. F. Gales
    HILM
ArXivPDFHTML
Abstract

State-of-the-art summarization systems can generate highly fluent summaries. These summaries, however, may contain factual inconsistencies and/or information not present in the source. Hence, an important component of assessing the quality of summaries is to determine whether there is information consistency between the source and the summary. Existing approaches are typically based on lexical matching or representation-based methods. In this work, we introduce an alternative scheme based on standard information-theoretic measures in which the information present in the source and summary is directly compared. We propose a Multiple-choice Question Answering and Generation framework, MQAG, which approximates the information consistency by computing the expected statistical distance between summary and source answer distributions over automatically generated multiple-choice questions. This approach exploits multiple-choice answer probabilities, as predicted answer distributions can be compared. We conduct experiments on four summary evaluation datasets: QAG-CNNDM/XSum, XSum-Hallucination, Podcast Assessment, and SummEval. Experiments show that MQAG, using models trained on SQuAD or RACE, outperforms existing evaluation methods on the majority of tasks.

View on arXiv
Comments on this paper