Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.13262
Cited By
Temporal Consistency Loss for Physics-Informed Neural Networks
30 January 2023
Sukirt Thakur
M. Raissi
H. Mitra
A. Ardekani
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Temporal Consistency Loss for Physics-Informed Neural Networks"
6 / 6 papers shown
Title
Physics-Informed Neural Network based inverse framework for time-fractional differential equations for rheology
Sukirt Thakur
H. Mitra
A. Ardekani
18
0
0
06 Jun 2024
About optimal loss function for training physics-informed neural networks under respecting causality
V. A. Es'kin
Danil V. Davydov
Ekaterina D. Egorova
Alexey O. Malkhanov
Mikhail A. Akhukov
Mikhail E. Smorkalov
PINN
16
7
0
05 Apr 2023
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions
Michael Penwarden
Ameya Dilip Jagtap
Shandian Zhe
George Karniadakis
Robert M. Kirby
PINN
AI4CE
16
57
0
28 Feb 2023
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
40
209
0
16 Jul 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
126
0
14 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
172
758
0
13 Mar 2020
1