Can't Touch This: Real-Time, Safe Motion Planning and Control for Manipulators Under Uncertainty

Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator to avoid collisions, obey joint limits, and account for uncertainties in the mass and inertia of objects and the robot itself. This paper proposes Autonomous Robust Manipulation via Optimization with Uncertainty-aware Reachability (ARMOUR), a provably-safe, receding-horizon trajectory planner and tracking controller framework for robotic manipulators to address these challenges. ARMOUR first constructs a robust controller that tracks desired trajectories with bounded error despite uncertain dynamics. ARMOUR then uses a novel recursive Newton-Euler method to compute all inputs required to track any trajectory within a continuum of desired trajectories. Finally, ARMOUR over-approximates the swept volume of the manipulator; this enables one to formulate an optimization problem that can be solved in real-time to synthesize provably-safe motions. This paper compares ARMOUR to state of the art methods on a set of challenging manipulation examples in simulation and demonstrates its ability to ensure safety on real hardware in the presence of model uncertainty without sacrificing performance. Project page: https://roahmlab.github.io/armour/.
View on arXiv