ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13376
  4. Cited By
Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
  Overflow Avoidance

Quantized Neural Networks for Low-Precision Accumulation with Guaranteed Overflow Avoidance

31 January 2023
Ian Colbert
Alessandro Pappalardo
Jakoba Petri-Koenig
    MQ
ArXivPDFHTML

Papers citing "Quantized Neural Networks for Low-Precision Accumulation with Guaranteed Overflow Avoidance"

6 / 6 papers shown
Title
Mixed precision accumulation for neural network inference guided by componentwise forward error analysis
Mixed precision accumulation for neural network inference guided by componentwise forward error analysis
El-Mehdi El Arar
Silviu-Ioan Filip
Theo Mary
Elisa Riccietti
52
0
0
19 Mar 2025
Accumulator-Aware Post-Training Quantization
Accumulator-Aware Post-Training Quantization
Ian Colbert
Fabian Grob
Giuseppe Franco
Jinjie Zhang
Rayan Saab
MQ
22
3
0
25 Sep 2024
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image
  Upsampling
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image Upsampling
Ian Colbert
Ken Kreutz-Delgado
Srinjoy Das
38
4
0
15 Jul 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,175
0
16 Sep 2016
1