Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.13724
Cited By
Towards fully covariant machine learning
31 January 2023
Soledad Villar
D. Hogg
Weichi Yao
George A. Kevrekidis
Bernhard Schölkopf
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards fully covariant machine learning"
9 / 9 papers shown
Title
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
57
3
0
30 Oct 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
31
5
0
17 Jun 2024
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Rui Wang
Robin G. Walters
Rose Yu
25
73
0
28 Jan 2022
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
27
14
0
12 Oct 2021
A simple equivariant machine learning method for dynamics based on scalars
Weichi Yao
Kate Storey-Fisher
D. Hogg
Soledad Villar
AI4CE
35
9
0
07 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
44
89
0
25 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1