The financial markets, which involve more than 90trillionmarketcapitals,attracttheattentionofinnumerableinvestorsaroundtheworld.Recently,reinforcementlearninginfinancialmarkets(FinRL)hasemergedasapromisingdirectiontotrainagentsformakingprofitableinvestmentdecisions.However,theevaluationofmostFinRLmethodsonlyfocusesonprofit−relatedmeasuresandignoresmanycriticalaxes,whicharefarfromsatisfactoryforfinancialpractitionerstodeploythesemethodsintoreal−worldfinancialmarkets.Therefore,weintroducePRUDEX−Compass,whichhas6axes,i.e.,Profitability,Risk−control,Universality,Diversity,rEliability,andeXplainability,withatotalof17measuresforasystematicevaluation.Specifically,i)weproposeAlphaMix+asastrongFinRLbaseline,whichleveragesmixture−of−experts(MoE)andrisk−sensitiveapproachestomakediversifiedrisk−awareinvestmentdecisions,ii)weevaluate8FinRLmethodsin4long−termreal−worlddatasetsofinfluentialfinancialmarketstodemonstratetheusageofourPRUDEX−Compass,iii)PRUDEX−Compasstogetherwith4real−worlddatasets,standardimplementationof8FinRLmethodsandaportfoliomanagementenvironmentisreleasedaspublicresourcestofacilitatethedesignandcomparisonofnewFinRLmethods.WehopethatPRUDEX−CompasscannotonlyshedlightonfutureFinRLresearchtopreventuntrustworthyresultsfromstagnatingFinRLintosuccessfulindustrydeploymentbutalsoprovideanewchallengingalgorithmevaluationscenarioforthereinforcementlearning(RL)community.