Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.01068
Cited By
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
2 February 2023
Hui-Po Wang
Dingfan Chen
Raouf Kerkouche
Mario Fritz
FedML
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations"
6 / 6 papers shown
Title
Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models
Hui-Po Wang
Mario Fritz
28
3
0
26 Sep 2024
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
91
84
0
02 May 2023
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Label Leakage and Protection in Two-party Split Learning
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
122
139
0
17 Feb 2021
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
189
288
0
16 Feb 2021
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
770
0
15 Feb 2021
1