Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.01178
Cited By
Convolutional Neural Operators for robust and accurate learning of PDEs
2 February 2023
Bogdan Raonić
Roberto Molinaro
Tim De Ryck
Tobias Rohner
Francesca Bartolucci
Rima Alaifari
Siddhartha Mishra
Emmanuel de Bezenac
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convolutional Neural Operators for robust and accurate learning of PDEs"
7 / 57 papers shown
Title
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
37
23
0
23 May 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
56
58
0
23 May 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
8
32
0
17 Feb 2022
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
198
477
0
01 Oct 2021
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Quentin Delfosse
P. Schramowski
Martin Mundt
Alejandro Molina
Kristian Kersting
29
8
0
18 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
212
19,191
0
21 Nov 2016
Previous
1
2