ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.03523
  4. Cited By
Sparse Mixture Once-for-all Adversarial Training for Efficient In-Situ
  Trade-Off Between Accuracy and Robustness of DNNs

Sparse Mixture Once-for-all Adversarial Training for Efficient In-Situ Trade-Off Between Accuracy and Robustness of DNNs

27 December 2022
Souvik Kundu
Sairam Sundaresan
S. N. Sridhar
Shunlin Lu
Han Tang
P. Beerel
    AAML
    MoE
ArXivPDFHTML

Papers citing "Sparse Mixture Once-for-all Adversarial Training for Efficient In-Situ Trade-Off Between Accuracy and Robustness of DNNs"

2 / 2 papers shown
Title
Linearizing Models for Efficient yet Robust Private Inference
Linearizing Models for Efficient yet Robust Private Inference
Sreetama Sarkar
Souvik Kundu
P. Beerel
AAML
8
0
0
08 Feb 2024
ShiftAddNet: A Hardware-Inspired Deep Network
ShiftAddNet: A Hardware-Inspired Deep Network
Haoran You
Xiaohan Chen
Yongan Zhang
Chaojian Li
Sicheng Li
Zihao Liu
Zhangyang Wang
Yingyan Lin
OOD
MQ
47
75
0
24 Oct 2020
1