ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04313
  4. Cited By
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization

Geometry-Complete Diffusion for 3D Molecule Generation and Optimization

8 February 2023
Alex Morehead
Jianlin Cheng
    DiffM
ArXivPDFHTML

Papers citing "Geometry-Complete Diffusion for 3D Molecule Generation and Optimization"

17 / 17 papers shown
Title
GEOM-Drugs Revisited: Toward More Chemically Accurate Benchmarks for 3D Molecule Generation
GEOM-Drugs Revisited: Toward More Chemically Accurate Benchmarks for 3D Molecule Generation
Filipp Nikitin
Ian Dunn
D. Koes
Olexandr Isayev
39
0
0
30 Apr 2025
Unified Guidance for Geometry-Conditioned Molecular Generation
Unified Guidance for Geometry-Conditioned Molecular Generation
Sirine Ayadi
Leon Hetzel
Johanna Sommer
Fabian J. Theis
Stephan Günnemann
30
0
0
05 Jan 2025
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
37
1
0
04 Oct 2024
Generative Aerodynamic Design with Diffusion Probabilistic Models
Generative Aerodynamic Design with Diffusion Probabilistic Models
Thomas Wagenaar
Simone Mancini
Andrés Mateo-Gabín
DiffM
AI4CE
27
0
0
20 Sep 2024
Fragment-Masked Diffusion for Molecular Optimization
Fragment-Masked Diffusion for Molecular Optimization
Kun Li
Xiantao Cai
Jia Wu
Shirui Pan
Huiting Xu
Bo Du
Wenbin Hu
33
0
0
17 Aug 2024
Diffusion Models in $\textit{De Novo}$ Drug Design
Diffusion Models in De Novo\textit{De Novo}De Novo Drug Design
Amira Alakhdar
Barnabás Póczos
Newell Washburn
MedIm
21
11
0
07 Jun 2024
Response Matching for generating materials and molecules
Response Matching for generating materials and molecules
Bingqing Cheng
DiffM
14
1
0
15 May 2024
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffM
AI4CE
45
131
0
02 May 2023
DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding
DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding
Haitao Lin
Yufei Huang
Odin Zhang
Siqi Ma
Meng Liu
X. Li
Lirong Wu
Shuiwang Ji
Tingjun Hou
Stan Z. Li
DiffM
6
59
0
21 Nov 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
399
0
04 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
64
64
0
26 Sep 2022
Protein Structure and Sequence Generation with Equivariant Denoising
  Diffusion Probabilistic Models
Protein Structure and Sequence Generation with Equivariant Denoising Diffusion Probabilistic Models
N. Anand
Tudor Achim
DiffM
175
170
0
26 May 2022
Geometric Transformers for Protein Interface Contact Prediction
Geometric Transformers for Protein Interface Contact Prediction
Alex Morehead
Chen Chen
Jianlin Cheng
26
28
0
06 Oct 2021
Inverse design of 3d molecular structures with conditional generative
  neural networks
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
173
125
0
10 Sep 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
208
1,329
0
12 Feb 2018
1