ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.05783
  4. Cited By
ConCerNet: A Contrastive Learning Based Framework for Automated
  Conservation Law Discovery and Trustworthy Dynamical System Prediction

ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction

11 February 2023
Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Lucani E. Daniel
Lam M. Nguyen
    PINN
ArXivPDFHTML

Papers citing "ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction"

3 / 3 papers shown
Title
Guaranteeing Conservation Laws with Projection in Physics-Informed
  Neural Networks
Guaranteeing Conservation Laws with Projection in Physics-Informed Neural Networks
Anthony Baez
Wang Zhang
Ziwen Ma
Subhro Das
Lam M. Nguyen
Luca Daniel
PINN
14
1
0
22 Oct 2024
PICL: Physics Informed Contrastive Learning for Partial Differential
  Equations
PICL: Physics Informed Contrastive Learning for Partial Differential Equations
Cooper Lorsung
A. Farimani
AI4CE
28
4
0
29 Jan 2024
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
1