Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.06960
Cited By
v1
v2
v3 (latest)
Data pruning and neural scaling laws: fundamental limitations of score-based algorithms
14 February 2023
Fadhel Ayed
Soufiane Hayou
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Data pruning and neural scaling laws: fundamental limitations of score-based algorithms"
7 / 7 papers shown
Title
Efficient Alignment of Large Language Models via Data Sampling
Amrit Khera
Rajat Ghosh
Debojyoti Dutta
149
1
0
15 Nov 2024
All models are wrong, some are useful: Model Selection with Limited Labels
Patrik Okanovic
Andreas Kirsch
Jannes Kasper
Torsten Hoefler
Andreas Krause
Nezihe Merve Gürel
VLM
47
1
0
17 Oct 2024
Distilling the Knowledge in Data Pruning
Emanuel Ben-Baruch
Adam Botach
Igor Kviatkovsky
Manoj Aggarwal
Gérard Medioni
70
2
0
12 Mar 2024
How to Train Data-Efficient LLMs
Noveen Sachdeva
Benjamin Coleman
Wang-Cheng Kang
Jianmo Ni
Lichan Hong
Ed H. Chi
James Caverlee
Julian McAuley
D. Cheng
93
64
0
15 Feb 2024
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Patrik Okanovic
R. Waleffe
Vasilis Mageirakos
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
Nezihe Merve Gürel
Theodoros Rekatsinas
DD
104
14
0
28 May 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
92
78
0
11 Jan 2023
Contextual Diversity for Active Learning
Sharat Agarwal
H. Arora
Saket Anand
Chetan Arora
175
172
0
13 Aug 2020
1