ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.07061
15
15

Do Deep Learning Methods Really Perform Better in Molecular Conformation Generation?

14 February 2023
G. Zhou
Zhifeng Gao
Zhewei Wei
Hang Zheng
Guolin Ke
    OOD
    AI4CE
    BDL
ArXivPDFHTML
Abstract

Molecular conformation generation (MCG) is a fundamental and important problem in drug discovery. Many traditional methods have been developed to solve the MCG problem, such as systematic searching, model-building, random searching, distance geometry, molecular dynamics, Monte Carlo methods, etc. However, they have some limitations depending on the molecular structures. Recently, there are plenty of deep learning based MCG methods, which claim they largely outperform the traditional methods. However, to our surprise, we design a simple and cheap algorithm (parameter-free) based on the traditional methods and find it is comparable to or even outperforms deep learning based MCG methods in the widely used GEOM-QM9 and GEOM-Drugs benchmarks. In particular, our design algorithm is simply the clustering of the RDKIT-generated conformations. We hope our findings can help the community to revise the deep learning methods for MCG. The code of the proposed algorithm could be found at https://gist.github.com/ZhouGengmo/5b565f51adafcd911c0bc115b2ef027c.

View on arXiv
Comments on this paper