ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08243
  4. Cited By
New Insights on Relieving Task-Recency Bias for Online Class Incremental
  Learning
v1v2 (latest)

New Insights on Relieving Task-Recency Bias for Online Class Incremental Learning

16 February 2023
Guoqiang Liang
Zhaojie Chen
Zhaoqiang Chen
Shiyu Ji
Yanning Zhang
    CLL
ArXiv (abs)PDFHTMLGithub (8★)

Papers citing "New Insights on Relieving Task-Recency Bias for Online Class Incremental Learning"

5 / 5 papers shown
Title
Multi-level Collaborative Distillation Meets Global Workspace Model: A Unified Framework for OCIL
Multi-level Collaborative Distillation Meets Global Workspace Model: A Unified Framework for OCIL
Shibin Su
Guoqiang Liang
De Cheng
Shizhou Zhang
Lingyan Ran
Yanning Zhang
CLL
92
0
0
12 Aug 2025
CalFuse: Feature Calibration Enhanced Parameter Fusion for Class-Continual Learning
CalFuse: Feature Calibration Enhanced Parameter Fusion for Class-Continual Learning
Jiaxin Guo
Xiaoguang Zhu
Xiaoguang Zhu
Lianlong Sun
Liangyu Teng
...
Di Li
Wei Zhou
Liang Song
Wei Zhou
Liang Song
CLLVLM
445
1
0
01 Jul 2025
Balanced Online Class-Incremental Learning via Dual Classifiers
Balanced Online Class-Incremental Learning via Dual Classifiers
Shunjie Wen
Thomas Heinis
Dong-Wan Choi
CLL
238
0
0
29 Apr 2025
Domain-Aware Augmentations for Unsupervised Online General Continual
  Learning
Domain-Aware Augmentations for Unsupervised Online General Continual LearningBritish Machine Vision Conference (BMVC), 2023
Nicolas Michel
Romain Negrel
Giovanni Chierchia
J. Bercher
CLL
188
3
0
13 Sep 2023
Rethinking Momentum Knowledge Distillation in Online Continual Learning
Rethinking Momentum Knowledge Distillation in Online Continual LearningInternational Conference on Machine Learning (ICML), 2023
Nicolas Michel
Maorong Wang
L. Xiao
T. Yamasaki
CLL
190
16
0
06 Sep 2023
1