ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08766
  4. Cited By
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk
  Minimization

A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization

17 February 2023
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
ArXivPDFHTML

Papers citing "A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization"

8 / 8 papers shown
Title
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Youran Dong
Junfeng Yang
Wei-Ting Yao
Jin Zhang
94
0
0
04 May 2025
Differentially Private Bilevel Optimization
Differentially Private Bilevel Optimization
Guy Kornowski
96
0
0
29 Sep 2024
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach
Mao Ye
B. Liu
S. Wright
Peter Stone
Qian Liu
72
82
0
19 Sep 2022
A framework for bilevel optimization that enables stochastic and global
  variance reduction algorithms
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
Mathieu Dagréou
Pierre Ablin
Samuel Vaiter
Thomas Moreau
129
95
0
31 Jan 2022
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Michael Arbel
Julien Mairal
101
58
0
29 Nov 2021
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
99
715
0
13 Jun 2018
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
112
404
0
06 Mar 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,198
0
16 Aug 2016
1