ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.10433
24
10

On discrete symmetries of robotics systems: A group-theoretic and data-driven analysis

21 February 2023
Daniel Felipe Ordoñez Apraez
Mario Martin
Antonio Agudo
Francesc Moreno-Noguer
    AI4CE
ArXivPDFHTML
Abstract

We present a comprehensive study on discrete morphological symmetries of dynamical systems, which are commonly observed in biological and artificial locomoting systems, such as legged, swimming, and flying animals/robots/virtual characters. These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology, resulting in harmonious duplication and distribution of body parts. Significantly, we characterize how morphological symmetries extend to symmetries in the system's dynamics, optimal control policies, and in all proprioceptive and exteroceptive measurements related to the system's dynamics evolution. In the context of data-driven methods, symmetry represents an inductive bias that justifies the use of data augmentation or symmetric function approximators. To tackle this, we present a theoretical and practical framework for identifying the system's morphological symmetry group \G\G\G and characterizing the symmetries in proprioceptive and exteroceptive data measurements. We then exploit these symmetries using data augmentation and \G\G\G-equivariant neural networks. Our experiments on both synthetic and real-world applications provide empirical evidence of the advantageous outcomes resulting from the exploitation of these symmetries, including improved sample efficiency, enhanced generalization, and reduction of trainable parameters.

View on arXiv
Comments on this paper