Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.11485
Cited By
Efficient Training of Large-scale Industrial Fault Diagnostic Models through Federated Opportunistic Block Dropout
22 February 2023
Yuanyuan Chen
Zichen Chen
Sheng Guo
Yansong Zhao
Zelei Liu
Pengcheng Wu
Che-Sheng Yang
Zengxiang Li
Han Yu
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Training of Large-scale Industrial Fault Diagnostic Models through Federated Opportunistic Block Dropout"
5 / 5 papers shown
Title
Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources
Siddhant Dutta
Iago Leal de Freitas
Pedro Maciel Xavier
Claudio Miceli de Farias
David E. Bernal Neira
AI4CE
FedML
71
0
0
23 Nov 2024
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
203
840
0
01 Mar 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
175
355
0
07 Dec 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
159
760
0
28 Sep 2019
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
249
36,362
0
25 Aug 2016
1