Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.14231
Cited By
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
28 February 2023
B. Deng
Peichen Zhong
KyuJung Jun
Janosh Riebesell
K. Han
Christopher J. Bartel
Gerbrand Ceder
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling"
2 / 2 papers shown
Title
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
153
245
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
198
1,232
0
08 Jan 2021
1