Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.01598
Cited By
A Meta-Learning Approach to Predicting Performance and Data Requirements
2 March 2023
Achin Jain
Gurumurthy Swaminathan
Paolo Favaro
Hao-Yu Yang
Avinash Ravichandran
Hrayr Harutyunyan
Alessandro Achille
O. Dabeer
Bernt Schiele
A. Swaminathan
Stefano Soatto
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Meta-Learning Approach to Predicting Performance and Data Requirements"
9 / 9 papers shown
Title
Data Scaling Laws for End-to-End Autonomous Driving
Alexander Naumann
Xunjiang Gu
Tolga Dimlioglu
Mariusz Bojarski
Alperen Degirmenci
A. Popov
Devansh Bisla
Marco Pavone
Urs Muller
B. Ivanovic
46
0
0
06 Apr 2025
Scaling Laws for Downstream Task Performance in Machine Translation
Berivan Isik
Natalia Ponomareva
Hussein Hazimeh
Dimitris Paparas
Sergei Vassilvitskii
Sanmi Koyejo
105
23
0
24 Feb 2025
A Probabilistic Method to Predict Classifier Accuracy on Larger Datasets given Small Pilot Data
Ethan Harvey
Wansu Chen
David M Kent
Michael C. Hughes
11
1
0
29 Nov 2023
How to Select Which Active Learning Strategy is Best Suited for Your Specific Problem and Budget
Guy Hacohen
D. Weinshall
8
8
0
06 Jun 2023
Scaling Laws for Hyperparameter Optimization
Arlind Kadra
Maciej Janowski
Martin Wistuba
Josif Grabocka
15
8
0
01 Feb 2023
Optimizing Data Collection for Machine Learning
Rafid Mahmood
James Lucas
J. Álvarez
Sanja Fidler
M. Law
47
26
0
03 Oct 2022
Revisiting Neural Scaling Laws in Language and Vision
Ibrahim M. Alabdulmohsin
Behnam Neyshabur
Xiaohua Zhai
148
101
0
13 Sep 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
CrowdHuman: A Benchmark for Detecting Human in a Crowd
Shuai Shao
Zijian Zhao
Boxun Li
Tete Xiao
Gang Yu
Xiangyu Zhang
Jian-jun Sun
211
670
0
30 Apr 2018
1