ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02011
  4. Cited By
Diagnosing Model Performance Under Distribution Shift

Diagnosing Model Performance Under Distribution Shift

3 March 2023
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
ArXivPDFHTML

Papers citing "Diagnosing Model Performance Under Distribution Shift"

19 / 19 papers shown
Title
A Directional Rockafellar-Uryasev Regression
A Directional Rockafellar-Uryasev Regression
Alberto Arletti
24
0
0
04 Nov 2024
LLM Embeddings Improve Test-time Adaptation to Tabular $Y|X$-Shifts
LLM Embeddings Improve Test-time Adaptation to Tabular Y∣XY|XY∣X-Shifts
Yibo Zeng
Jiashuo Liu
H. Lam
Hongseok Namkoong
LMTD
19
1
0
09 Oct 2024
Control+Shift: Generating Controllable Distribution Shifts
Control+Shift: Generating Controllable Distribution Shifts
Roy Friedman
Rhea Chowers
26
0
0
12 Sep 2024
The Data Addition Dilemma
The Data Addition Dilemma
Judy Hanwen Shen
Inioluwa Deborah Raji
Irene Y. Chen
30
5
0
08 Aug 2024
Robust prediction under missingness shifts
Robust prediction under missingness shifts
P. Rockenschaub
Zhicong Xian
Alireza Zamanian
Marta Piperno
Octavia-Andreea Ciora
E. Pachl
Narges Ahmidi
OOD
29
0
0
24 Jun 2024
DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large
  Language Models
DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models
Taolin Zhang
Qizhou Chen
Dongyang Li
Chengyu Wang
Xiaofeng He
Longtao Huang
Hui Xue
Junyuan Huang
CLL
KELM
37
3
0
31 May 2024
Fairness Hub Technical Briefs: Definition and Detection of Distribution
  Shift
Fairness Hub Technical Briefs: Definition and Detection of Distribution Shift
Nicolas Acevedo
Carmen Cortez
Christopher A. Brooks
René F. Kizilcec
Renzhe Yu
21
0
0
23 May 2024
Multi-Source Conformal Inference Under Distribution Shift
Multi-Source Conformal Inference Under Distribution Shift
Yi Liu
Alexander W. Levis
Sharon-Lise T. Normand
Larry Han
OOD
21
7
0
15 May 2024
A robust assessment for invariant representations
A robust assessment for invariant representations
Wenlu Tang
Zicheng Liu
OOD
19
0
0
07 Apr 2024
A Survey on Evaluation of Out-of-Distribution Generalization
A Survey on Evaluation of Out-of-Distribution Generalization
Han Yu
Jiashuo Liu
Xingxuan Zhang
Jiayun Wu
Peng Cui
OOD
42
9
0
04 Mar 2024
A hierarchical decomposition for explaining ML performance discrepancies
A hierarchical decomposition for explaining ML performance discrepancies
Jean Feng
Harvineet Singh
Fan Xia
Adarsh Subbaswamy
Alexej Gossmann
CML
25
0
0
22 Feb 2024
Understanding Disparities in Post Hoc Machine Learning Explanation
Understanding Disparities in Post Hoc Machine Learning Explanation
Vishwali Mhasawade
Salman Rahman
Zoe Haskell-Craig
R. Chunara
8
3
0
25 Jan 2024
A Baseline Analysis of Reward Models' Ability To Accurately Analyze
  Foundation Models Under Distribution Shift
A Baseline Analysis of Reward Models' Ability To Accurately Analyze Foundation Models Under Distribution Shift
Will LeVine
Benjamin Pikus
Tony Chen
Sean Hendryx
8
8
0
21 Nov 2023
Label Shift Estimators for Non-Ignorable Missing Data
Label Shift Estimators for Non-Ignorable Missing Data
Andrew C. Miller
Joseph D. Futoma
13
0
0
27 Oct 2023
MuggleMath: Assessing the Impact of Query and Response Augmentation on
  Math Reasoning
MuggleMath: Assessing the Impact of Query and Response Augmentation on Math Reasoning
Chengpeng Li
Zheng Yuan
Hongyi Yuan
Guanting Dong
Keming Lu
Jiancan Wu
Chuanqi Tan
Xiang Wang
Chang Zhou
LRM
10
21
0
09 Oct 2023
"Why did the Model Fail?": Attributing Model Performance Changes to
  Distribution Shifts
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Haoran Zhang
Harvineet Singh
Marzyeh Ghassemi
Shalmali Joshi
14
18
0
19 Oct 2022
Undersmoothing Causal Estimators with Generative Trees
Undersmoothing Causal Estimators with Generative Trees
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
16
1
0
16 Mar 2022
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
29
510
0
31 Aug 2021
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
149
9,300
0
28 May 2015
1