Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.02251
Cited By
Certified Robust Neural Networks: Generalization and Corruption Resistance
3 March 2023
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Certified Robust Neural Networks: Generalization and Corruption Resistance"
13 / 13 papers shown
Title
HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
Haoqi He
Yan Xiao
36
0
0
20 Mar 2025
Provable Robust Overfitting Mitigation in Wasserstein Distributionally Robust Optimization
Shuang Liu
Yihan Wang
Yifan Zhu
Yibo Miao
Xiao-Shan Gao
56
0
0
06 Mar 2025
Universal generalization guarantees for Wasserstein distributionally robust models
Tam Le
Jérome Malick
OOD
35
1
0
28 Jan 2025
Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls
Aras Selvi
Eleonora Kreacic
Mohsen Ghassemi
Vamsi K. Potluru
T. Balch
Manuela Veloso
16
0
0
18 Jul 2024
Robust Distribution Learning with Local and Global Adversarial Corruptions
Sloan Nietert
Ziv Goldfeld
Soroosh Shafiee
OOD
26
0
0
10 Jun 2024
Generalization Bound and New Algorithm for Clean-Label Backdoor Attack
Lijia Yu
Shuang Liu
Yibo Miao
Xiao-Shan Gao
Lijun Zhang
AAML
27
5
0
02 Jun 2024
Towards Fairness-Aware Adversarial Learning
Yanghao Zhang
Tianle Zhang
Ronghui Mu
Xiaowei Huang
Wenjie Ruan
24
4
0
27 Feb 2024
On robust overfitting: adversarial training induced distribution matters
Runzhi Tian
Yongyi Mao
OOD
25
1
0
28 Nov 2023
Outlier-Robust Wasserstein DRO
Sloan Nietert
Ziv Goldfeld
Soroosh Shafiee
21
9
0
09 Nov 2023
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
25
21
0
19 Jul 2022
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
B. Wen
Qian Wang
AAML
71
467
0
02 Feb 2021
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
151
113
0
05 Mar 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
222
1,818
0
03 Feb 2017
1