ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.03592
  4. Cited By
Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
  Attacks
v1v2v3 (latest)

Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning Attacks

International Conference on Machine Learning (ICML), 2023
7 March 2023
Yiwei Lu
Gautam Kamath
Yaoliang Yu
    AAML
ArXiv (abs)PDFHTML

Papers citing "Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning Attacks"

8 / 8 papers shown
Title
Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
William Xu
Yiwei Lu
Yihan Wang
Matthew Y.R. Yang
Zuoqiu Liu
Gautam Kamath
Yaoliang Yu
132
0
0
08 Sep 2025
Stress-Testing ML Pipelines with Adversarial Data Corruption
Stress-Testing ML Pipelines with Adversarial Data CorruptionProceedings of the VLDB Endowment (PVLDB), 2025
Jiongli Zhu
Geyang Xu
Felipe Lorenzi
Boris Glavic
Babak Salimi
191
0
0
02 Jun 2025
Engineering Trustworthy AI: A Developer Guide for Empirical Risk
  Minimization
Engineering Trustworthy AI: A Developer Guide for Empirical Risk MinimizationIEEE Transactions on Artificial Intelligence (IEEE TAI), 2024
Diana Pfau
Alexander Jung
245
1
0
25 Oct 2024
UTrace: Poisoning Forensics for Private Collaborative Learning
UTrace: Poisoning Forensics for Private Collaborative Learning
Evan Rose
Hidde Lycklama
Harsh Chaudhari
Niklas Britz
Anwar Hithnawi
Alina Oprea
441
2
0
23 Sep 2024
Machine Unlearning Fails to Remove Data Poisoning Attacks
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
Jimmy Z. Di
Yiwei Lu
Gautam Kamath
Ayush Sekhari
Seth Neel
AAMLMU
502
25
0
25 Jun 2024
Purify Unlearnable Examples via Rate-Constrained Variational
  Autoencoders
Purify Unlearnable Examples via Rate-Constrained Variational AutoencodersInternational Conference on Machine Learning (ICML), 2024
Yi Yu
Yufei Wang
Song Xia
Wenhan Yang
Shijian Lu
Yap-Peng Tan
A.C. Kot
AAML
248
17
0
02 May 2024
Disguised Copyright Infringement of Latent Diffusion Models
Disguised Copyright Infringement of Latent Diffusion ModelsInternational Conference on Machine Learning (ICML), 2024
Yiwei Lu
Matthew Y.R. Yang
Zuoqiu Liu
Gautam Kamath
Yaoliang Yu
WIGM
403
9
0
10 Apr 2024
Transferable Availability Poisoning Attacks
Transferable Availability Poisoning Attacks
Yiyong Liu
Michael Backes
Xiao Zhang
AAML
197
6
0
08 Oct 2023
1