ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.03918
  4. Cited By
Error convergence and engineering-guided hyperparameter search of PINNs:
  towards optimized I-FENN performance

Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance

3 March 2023
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
ArXivPDFHTML

Papers citing "Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance"

6 / 6 papers shown
Title
Physics-informed DeepONet with stiffness-based loss functions for
  structural response prediction
Physics-informed DeepONet with stiffness-based loss functions for structural response prediction
Bilal Ahmed
Yuqing Qiu
Diab W. Abueidda
Waleed El-Sekelly
Borja Garcia de Soto
Tarek Abdoun
M. Mobasher
13
0
0
02 Sep 2024
Error Analysis and Numerical Algorithm for PDE Approximation with
  Hidden-Layer Concatenated Physics Informed Neural Networks
Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks
Yianxia Qian
Yongchao Zhang
Suchuan Dong
PINN
29
0
0
10 Jun 2024
Physics-Informed Neural Networks for an optimal counterdiabatic quantum
  computation
Physics-Informed Neural Networks for an optimal counterdiabatic quantum computation
Antonio Ferrer-Sánchez
Carlos Flores-Garrigós
C. Hernani-Morales
José J. Orquín-Marqués
N. N. Hegade
Alejandro Gomez Cadavid
Iraitz Montalban
Enrique Solano
Yolanda Vives-Gilabert
J. D. Martín-Guerrero
32
2
0
08 Sep 2023
Hyper-parameter tuning of physics-informed neural networks: Application
  to Helmholtz problems
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
Paul Escapil-Inchauspé
G. A. Ruz
24
32
0
13 May 2022
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
1