ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06438
  4. Cited By
On Neural Architectures for Deep Learning-based Source Separation of
  Co-Channel OFDM Signals

On Neural Architectures for Deep Learning-based Source Separation of Co-Channel OFDM Signals

11 March 2023
Gary C. F. Lee
Amir Weiss
A. Lancho
Yury Polyanskiy
G. Wornell
    AI4TS
ArXivPDFHTML

Papers citing "On Neural Architectures for Deep Learning-based Source Separation of Co-Channel OFDM Signals"

4 / 4 papers shown
Title
RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge
RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge
A. Lancho
Amir Weiss
Gary C. F. Lee
T. Jayashankar
Binoy G. Kurien
Yury Polyanskiy
Gregory W. Wornell
34
0
0
13 Sep 2024
Data-Driven Blind Synchronization and Interference Rejection for Digital
  Communication Signals
Data-Driven Blind Synchronization and Interference Rejection for Digital Communication Signals
A. Lancho
Amir Weiss
Gary C. F. Lee
Jennifer Tang
Yuheng Bu
Yury Polyanskiy
G. Wornell
19
8
0
11 Sep 2022
Dual-Path Transformer Network: Direct Context-Aware Modeling for
  End-to-End Monaural Speech Separation
Dual-Path Transformer Network: Direct Context-Aware Modeling for End-to-End Monaural Speech Separation
Jing-jing Chen
Qi-rong Mao
Dong Liu
54
280
0
28 Jul 2020
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
  Separation
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Daniel Stoller
Sebastian Ewert
S. Dixon
AI4TS
101
588
0
08 Jun 2018
1