ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09026
11
1

Towards Commonsense Knowledge based Fuzzy Systems for Supporting Size-Related Fine-Grained Object Detection

16 March 2023
Pufen Zhang
Tianhua Chen
Bing-Quan Liu
    ObjD
ArXivPDFHTML
Abstract

Deep learning has become the dominating approach for object detection. To achieve accurate fine-grained detection, one needs to employ a large enough model and a vast amount of data annotations. In this paper, we propose a commonsense knowledge inference module (CKIM) which leverages commonsense knowledge to assist a lightweight deep neural network base coarse-grained object detector to achieve accurate fine-grained detection. Specifically, we focus on a scenario where a single image contains objects of similar categories but varying sizes, and we establish a size-related commonsense knowledge inference module (CKIM) that maps the coarse-grained labels produced by the DL detector to size-related fine-grained labels. Considering that rule-based systems are one of the popular methods of knowledge representation and reasoning, our experiments explored two types of rule-based CKIMs, implemented using crisp-rule and fuzzy-rule approaches, respectively. Experimental results demonstrate that compared with baseline methods, our approach achieves accurate fine-grained detection with a reduced amount of annotated data and smaller model size. Our code is available at: https://github.com/ZJLAB-AMMI/CKIM.

View on arXiv
Comments on this paper