ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11135
  4. Cited By
TWINS: A Fine-Tuning Framework for Improved Transferability of
  Adversarial Robustness and Generalization

TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization

20 March 2023
Ziquan Liu
Yi Tian Xu
Xiangyang Ji
Antoni B. Chan
    AAML
ArXivPDFHTML

Papers citing "TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization"

4 / 4 papers shown
Title
An Empirical Study on Distribution Shift Robustness From the Perspective
  of Pre-Training and Data Augmentation
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
Ziquan Liu
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
Xiangyang Ji
Antoni B. Chan
OOD
27
14
0
25 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
170
256
0
10 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
1