ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11754
  4. Cited By
Projections of Model Spaces for Latent Graph Inference
v1v2v3 (latest)

Projections of Model Spaces for Latent Graph Inference

21 March 2023
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ingmar Posner
ArXiv (abs)PDFHTML

Papers citing "Projections of Model Spaces for Latent Graph Inference"

8 / 8 papers shown
Title
Bridging Graph and State-Space Modeling for Intensive Care Unit Length of Stay Prediction
Bridging Graph and State-Space Modeling for Intensive Care Unit Length of Stay Prediction
Shuqi Zi
Haitz Sáez de Ocáriz Borde
Emma Rocheteau
Pietro Lio
Mamba
203
0
0
24 Aug 2025
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
Alvaro Arroyo
Alessio Gravina
Benjamin Gutteridge
Federico Barbero
Claudio Gallicchio
Xiaowen Dong
Michael M. Bronstein
P. Vandergheynst
273
29
0
15 Feb 2025
Metric Learning for Clifford Group Equivariant Neural Networks
Metric Learning for Clifford Group Equivariant Neural Networks
Riccardo Ali
Paulina Kulyt.e
Haitz Sáez de Ocáriz Borde
Pietro Lio
161
1
0
13 Jul 2024
Rough Transformers: Lightweight and Continuous Time Series Modelling through Signature Patching
Rough Transformers: Lightweight and Continuous Time Series Modelling through Signature Patching
Fernando Moreno-Pino
Alvaro Arroyo
H. Waldon
Xiaowen Dong
Álvaro Cartea
AI4TS
444
11
0
31 May 2024
AMES: A Differentiable Embedding Space Selection Framework for Latent
  Graph Inference
AMES: A Differentiable Embedding Space Selection Framework for Latent Graph Inference
Yuan Lu
Haitz Sáez de Ocáriz Borde
Pietro Lio
173
3
0
20 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent GeometriesInternational Conference on Learning Representations (ICLR), 2023
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
389
6
0
23 Oct 2023
Neural Latent Geometry Search: Product Manifold Inference via
  Gromov-Hausdorff-Informed Bayesian Optimization
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian OptimizationNeural Information Processing Systems (NeurIPS), 2023
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ismael Morales
Ingmar Posner
Xiaowen Dong
334
12
0
09 Sep 2023
Gromov-Hausdorff Distances for Comparing Product Manifolds of Model
  Spaces
Gromov-Hausdorff Distances for Comparing Product Manifolds of Model Spaces
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ismael Morales
Ingmar Posner
Xiaowen Dong
166
0
0
09 Sep 2023
1