ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12261
  4. Cited By
Challenges and opportunities for machine learning in multiscale
  computational modeling

Challenges and opportunities for machine learning in multiscale computational modeling

22 March 2023
Phong C. H. Nguyen
Joseph B. Choi
H. Udaykumar
Stephen Seung-Yeob Baek
    AI4CE
ArXivPDFHTML

Papers citing "Challenges and opportunities for machine learning in multiscale computational modeling"

4 / 4 papers shown
Title
Efficient Surrogate Models for Materials Science Simulations: Machine
  Learning-based Prediction of Microstructure Properties
Efficient Surrogate Models for Materials Science Simulations: Machine Learning-based Prediction of Microstructure Properties
Binh Duong Nguyen
Pavlo Potapenko
Aytekin Dermici
Kishan Govind
Sébastien Bompas
Stefan Sandfeld
AI4CE
8
8
0
01 Sep 2023
Stress field prediction in fiber-reinforced composite materials using a
  deep learning approach
Stress field prediction in fiber-reinforced composite materials using a deep learning approach
Anindya Bhaduri
Ashwini Gupta
L. Graham‐Brady
AI4CE
14
114
0
01 Nov 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
58
0
15 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
1