ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14727
17
0

You Only Need One Thing One Click: Self-Training for Weakly Supervised 3D Scene Understanding

26 March 2023
Zhengzhe Liu
Xiaojuan Qi
Chi-Wing Fu
    3DPC
ArXivPDFHTML
Abstract

3D scene understanding, e.g., point cloud semantic and instance segmentation, often requires large-scale annotated training data, but clearly, point-wise labels are too tedious to prepare. While some recent methods propose to train a 3D network with small percentages of point labels, we take the approach to an extreme and propose ``One Thing One Click,'' meaning that the annotator only needs to label one point per object. To leverage these extremely sparse labels in network training, we design a novel self-training approach, in which we iteratively conduct the training and label propagation, facilitated by a graph propagation module. Also, we adopt a relation network to generate the per-category prototype to enhance the pseudo label quality and guide the iterative training. Besides, our model can be compatible to 3D instance segmentation equipped with a point-clustering strategy. Experimental results on both ScanNet-v2 and S3DIS show that our self-training approach, with extremely-sparse annotations, outperforms all existing weakly supervised methods for 3D semantic and instance segmentation by a large margin, and our results are also comparable to those of the fully supervised counterparts. Codes and models are available at https://github.com/liuzhengzhe/One-Thing-One-Click.

View on arXiv
Comments on this paper