ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14893
43
6

Context-Aware Transformer for 3D Point Cloud Automatic Annotation

27 March 2023
Xiaoyan Qian
Chang Liu
Xiaojuan Qi
Siew-Chong Tan
E. Lam
Ngai Wong
    3DPC
    ViT
ArXivPDFHTML
Abstract

3D automatic annotation has received increased attention since manually annotating 3D point clouds is laborious. However, existing methods are usually complicated, e.g., pipelined training for 3D foreground/background segmentation, cylindrical object proposals, and point completion. Furthermore, they often overlook the inter-object feature relation that is particularly informative to hard samples for 3D annotation. To this end, we propose a simple yet effective end-to-end Context-Aware Transformer (CAT) as an automated 3D-box labeler to generate precise 3D box annotations from 2D boxes, trained with a small number of human annotations. We adopt the general encoder-decoder architecture, where the CAT encoder consists of an intra-object encoder (local) and an inter-object encoder (global), performing self-attention along the sequence and batch dimensions, respectively. The former models intra-object interactions among points, and the latter extracts feature relations among different objects, thus boosting scene-level understanding. Via local and global encoders, CAT can generate high-quality 3D box annotations with a streamlined workflow, allowing it to outperform existing state-of-the-art by up to 1.79% 3D AP on the hard task of the KITTI test set.

View on arXiv
Comments on this paper