Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.15832
Cited By
The transformative potential of machine learning for experiments in fluid mechanics
28 March 2023
Ricardo Vinuesa
Steven L. Brunton
B. McKeon
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The transformative potential of machine learning for experiments in fluid mechanics"
20 / 20 papers shown
Title
Aerodynamic and structural airfoil shape optimisation via Transfer Learning-enhanced Deep Reinforcement Learning
David Ramos
Lucas Lacasa
E. Valero
G. Rubio
AI4CE
25
0
0
05 May 2025
A Status Quo Investigation of Large Language Models towards Cost-Effective CFD Automation with OpenFOAMGPT: ChatGPT vs. Qwen vs. Deepseek
Wenkang Wang
Ran Xu
Jingsen Feng
Qingfu Zhang
Xu Chu
30
2
0
02 Apr 2025
Towards certification: A complete statistical validation pipeline for supervised learning in industry
Lucas Lacasa
Abel Pardo
Pablo Arbelo
Miguel Sánchez
Pablo Yeste
...
Alejandro Martínez-Cava
G. Rubio
Ignacio Gómez
E. Valero
Javier de Vicente
AI4CE
26
1
0
04 Nov 2024
Modern, Efficient, and Differentiable Transport Equation Models using JAX: Applications to Population Balance Equations
Mohammed Alsubeihi
Arthur Jessop
Ben Moseley
Cláudio P. Fonte
Ashwin Kumar Rajagopalan
21
0
0
01 Nov 2024
Learning Adaptive Hydrodynamic Models Using Neural ODEs in Complex Conditions
Cong Wang
Aoming Liang
Fei Han
Xinyu Zeng
Zhibin Li
Dixia Fan
Jens Kober
AI4CE
20
1
0
01 Oct 2024
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer
Andres Cremades
S. Hoyas
Ricardo Vinuesa
FAtt
19
9
0
18 Sep 2024
Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models
Matteo Tomasetto
Andrea Manzoni
Francesco Braghin
AI4CE
13
1
0
09 Sep 2024
EngineBench: Flow Reconstruction in the Transparent Combustion Chamber III Optical Engine
Samuel J. Baker
Michael A. Hobley
Isabel Scherl
Xiaohang Fang
Felix C. P. Leach
M. Davy
AI4CE
21
0
0
05 Jun 2024
Prediction of flow and elastic stresses in a viscoelastic turbulent channel flow using convolutional neural networks
Arivazhagan G. Balasubramanian
Ricardo Vinuesa
O. Tammisola
16
0
0
22 Apr 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws
Ning Liu
Yiming Fan
Xianyi Zeng
Milan Klöwer
Lu Zhang
Yue Yu
AI4CE
13
8
0
18 Dec 2023
Uncovering wall-shear stress dynamics from neural-network enhanced fluid flow measurements
Esther Lagemann
Steven L. Brunton
Christian Lagemann
19
4
0
17 Oct 2023
Adaptive learning of effective dynamics: Adaptive real-time, online modeling for complex systems
Ivica Kicic
Pantelis R. Vlachas
G. Arampatzis
Michail Chatzimanolakis
Leonidas J. Guibas
P. Koumoutsakos
AI4CE
22
6
0
04 Apr 2023
Identifying regions of importance in wall-bounded turbulence through explainable deep learning
Andres Cremades
S. Hoyas
R. Deshpande
Pedro Quintero
Martin Lellep
...
J. Monty
Nicholas Hutchins
M. Linkmann
I. Marusic
Ricardo Vinuesa
FAtt
8
26
0
02 Feb 2023
Emerging trends in machine learning for computational fluid dynamics
Ricardo Vinuesa
Steve Brunton
AI4CE
6
14
0
28 Nov 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
98
353
0
05 Oct 2021
Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning
Kai Fukami
R. Maulik
Nesar Ramachandra
K. Fukagata
Kunihiko Taira
32
140
0
03 Jan 2021
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
Michael G. Kapteyn
Jacob V. R. Pretorius
Karen E. Willcox
32
213
0
10 Dec 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
177
83
0
12 Sep 2019
1