Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.15845
Cited By
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
28 March 2023
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems"
12 / 12 papers shown
Title
A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models
Shivam Kumar
Yun Yang
Lizhen Lin
18
0
0
02 Oct 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
38
9
0
27 Mar 2024
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
21
0
0
19 Feb 2024
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
16
5
0
27 Dec 2023
Y-Diagonal Couplings: Approximating Posteriors with Conditional Wasserstein Distances
Jannis Chemseddine
Paul Hagemann
Christian Wald
19
3
0
20 Oct 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
8
23
0
04 Oct 2023
Adversarial robustness of amortized Bayesian inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
9
13
0
24 May 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
17
3
0
17 Apr 2023
Bayesian Posterior Perturbation Analysis with Integral Probability Metrics
A. Garbuno-Iñigo
T. Helin
Franca Hoffmann
Bamdad Hosseini
23
9
0
02 Mar 2023
On Adversarial Robustness of Deep Image Deblurring
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Michael Moeller
31
11
0
05 Oct 2022
Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
52
15
0
05 Feb 2021
Well-posed Bayesian Inverse Problems with Infinitely-Divisible and Heavy-Tailed Prior Measures
Bamdad Hosseini
32
34
0
23 Sep 2016
1