ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.15849
  4. Cited By
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
  PINNs

GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs

28 March 2023
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
ArXivPDFHTML

Papers citing "GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs"

4 / 4 papers shown
Title
Deep adaptive sampling for surrogate modeling without labeled data
Deep adaptive sampling for surrogate modeling without labeled data
Xili Wang
Keju Tang
Jiayu Zhai
Xiaoliang Wan
Chao Yang
17
2
0
17 Feb 2024
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the
  Approximation of PDEs
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs
Keju Tang
Jiayu Zhai
Xiaoliang Wan
Chao Yang
10
8
0
30 May 2023
CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online
  Optimized Physics-Informed Neural Networks
CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks
Zhi-Ling Dong
Pawel Polak
PINN
16
1
0
18 Aug 2022
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
218
0
26 Apr 2021
1