Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.00150
Cited By
E(
3
3
3
) Equivariant Graph Neural Networks for Particle-Based Fluid Mechanics
31 March 2023
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid Mechanics"
6 / 6 papers shown
Title
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
A review of graph neural network applications in mechanics-related domains
Yingxue Zhao
Haoran Li
Haosu Zhou
H. Attar
Tobias Pfaff
Nan Li
AI4CE
34
5
0
10 Jul 2024
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
43
0
09 Jul 2024
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
26
0
0
16 Oct 2023
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
206
1,240
0
08 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
223
2,287
0
18 Oct 2020
1