ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03609
  4. Cited By
Revisiting Automated Prompting: Are We Actually Doing Better?

Revisiting Automated Prompting: Are We Actually Doing Better?

7 April 2023
Yulin Zhou
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
Y. Gal
ArXivPDFHTML

Papers citing "Revisiting Automated Prompting: Are We Actually Doing Better?"

12 / 12 papers shown
Title
MODP: Multi Objective Directional Prompting
MODP: Multi Objective Directional Prompting
Aashutosh Nema
Samaksh Gulati
Evangelos Giakoumakis
Bipana Thapaliya
LLMAG
44
0
0
25 Apr 2025
Prompting in the Dark: Assessing Human Performance in Prompt Engineering for Data Labeling When Gold Labels Are Absent
Prompting in the Dark: Assessing Human Performance in Prompt Engineering for Data Labeling When Gold Labels Are Absent
Zeyu He
Saniya Naphade
Ting-Hao 'Kenneth' Huang
33
0
0
16 Feb 2025
Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers
Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers
Tuo Zhang
Jinyue Yuan
A. Avestimehr
LRM
14
3
0
16 May 2024
A Communication Theory Perspective on Prompting Engineering Methods for
  Large Language Models
A Communication Theory Perspective on Prompting Engineering Methods for Large Language Models
Yuanfeng Song
Yuanqin He
Xuefang Zhao
Hanlin Gu
Di Jiang
Haijun Yang
Lixin Fan
Qiang Yang
22
0
0
24 Oct 2023
PromptSource: An Integrated Development Environment and Repository for
  Natural Language Prompts
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen H. Bach
Victor Sanh
Zheng-Xin Yong
Albert Webson
Colin Raffel
...
Khalid Almubarak
Xiangru Tang
Dragomir R. Radev
Mike Tian-Jian Jiang
Alexander M. Rush
VLM
212
335
0
02 Feb 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
228
780
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
275
3,784
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,296
0
17 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
248
1,382
0
21 Jan 2020
Language Models as Knowledge Bases?
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
391
2,216
0
03 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
1