ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03782
  4. Cited By
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural
  Networks

AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks

7 April 2023
Cheng Gong
Ye Lu
Surong Dai
Deng Qian
Chenkun Du
Tao Li
    MQ
ArXivPDFHTML

Papers citing "AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks"

2 / 2 papers shown
Title
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
311
1,047
0
10 Feb 2017
1