ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04077
  4. Cited By
Deep Prototypical-Parts Ease Morphological Kidney Stone Identification
  and are Competitively Robust to Photometric Perturbations

Deep Prototypical-Parts Ease Morphological Kidney Stone Identification and are Competitively Robust to Photometric Perturbations

8 April 2023
Daniel Flores-Araiza
F. Lopez-Tiro
Jonathan El Beze
Jacques Hubert
M. González-Mendoza
G. Ochoa-Ruiz
C. Daul
    MedIm
    OOD
ArXivPDFHTML

Papers citing "Deep Prototypical-Parts Ease Morphological Kidney Stone Identification and are Competitively Robust to Photometric Perturbations"

2 / 2 papers shown
Title
On the in vivo recognition of kidney stones using machine learning
On the in vivo recognition of kidney stones using machine learning
F. Lopez-Tiro
V. Estrade
Jacques Hubert
Daniel Flores-Araiza
M. González-Mendoza
Gilberto Ochoa
C. Daul
27
27
0
21 Jan 2022
Interpretable Image Classification with Differentiable Prototypes
  Assignment
Interpretable Image Classification with Differentiable Prototypes Assignment
Dawid Rymarczyk
Lukasz Struski
Michal Górszczak
K. Lewandowska
Jacek Tabor
Bartosz Zieliñski
31
98
0
06 Dec 2021
1