ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.05007
  4. Cited By
Privacy Amplification via Shuffling: Unified, Simplified, and Tightened

Privacy Amplification via Shuffling: Unified, Simplified, and Tightened

11 April 2023
Shaowei Wang
    FedML
ArXivPDFHTML

Papers citing "Privacy Amplification via Shuffling: Unified, Simplified, and Tightened"

9 / 9 papers shown
Title
P2NIA: Privacy-Preserving Non-Iterative Auditing
P2NIA: Privacy-Preserving Non-Iterative Auditing
Jade Garcia Bourrée
H. Lautraite
Sébastien Gambs
Gilles Tredan
Erwan Le Merrer
Benoit Rottembourg
42
0
0
01 Apr 2025
Segmented Private Data Aggregation in the Multi-message Shuffle Model
Segmented Private Data Aggregation in the Multi-message Shuffle Model
Shaowei Wang
Hongqiao Chen
Sufen Zeng
Ruilin Yang
Hui Jiang
...
Kaiqi Yu
Rundong Mei
Shaozheng Huang
Wei Yang
Bangzhou Xin
FedML
54
0
0
31 Dec 2024
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Shaowei Wang
Changyu Dong
Xiangfu Song
Jin Li
Zhili Zhou
Di Wang
Han Wu
41
0
0
26 Jun 2024
Individual Privacy Accounting for Differentially Private Stochastic
  Gradient Descent
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
11
17
0
06 Jun 2022
AHEAD: Adaptive Hierarchical Decomposition for Range Query under Local
  Differential Privacy
AHEAD: Adaptive Hierarchical Decomposition for Range Query under Local Differential Privacy
L. Du
Zhikun Zhang
Shaojie Bai
Changchang Liu
S. Ji
Peng Cheng
Jiming Chen
88
36
0
14 Oct 2021
Differentially Private Aggregation in the Shuffle Model: Almost Central
  Accuracy in Almost a Single Message
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
57
36
0
27 Sep 2021
Private Aggregation from Fewer Anonymous Messages
Private Aggregation from Fewer Anonymous Messages
Badih Ghazi
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
39
55
0
24 Sep 2019
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
138
420
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
83
278
0
02 Oct 2017
1